

Available online at www.sciencedirect.com

The Journal of Steroid Biochemistry & Molecular Biology

Journal of Steroid Biochemistry & Molecular Biology 89-90 (2004) 31-34

www.elsevier.com/locate/jsbmb

Synthesis and structure–activity relationships of TEI-9647 derivatives as Vitamin D_3 antagonists^{$\frac{1}{10}$}

Kazuya Takenouchi^{*,1}, Ryo Sogawa¹, Kenji Manabe¹, Hiroshi Saitoh¹, Qingzhi Gao², Daishiro Miura³, Seiichi Ishizuka¹

TEIJIN Institute for Bio-medical Research, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan

Abstract

The Vitamin D₃ lactone analogues, (23*S*)- and (23*R*)-25-dehydro-1 α -hydroxyvitamin D₃-26,23-lactone (TEI-9647 and TEI-9648) are antagonists of the 1 α ,25-dihydroxyvitamin D₃ (1 α ,25-(OH)₂D₃) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells. In order to clarify the structure–Vitamin D antagonistic activity relationship, we paid attention to the unique lactone moiety of TEI-9647 and TEI-9648: α -exo-methylene- γ -lactone structure. We synthesized the exo-methylene-modified analogues (methylene saturated, endo-methylene, methylene-deleted, methyl-substituted, dimethyl-substituted, methylene-replaced with dimethyl and cyclopropane) and oxygen-modified analogues (oxygen atom replaced with nitrogen and carbon atom) by convergent method using palladium-catalyzed coupling reaction or direct modification of VD₃ skeleton. The antagonistic activity in HL-60 cell differentiation evaluating system of these analogues revealed that any exo-methylene-modified analogues and nitrogen analogue did not have the antagonistic activity, on the other hand carbon analogue did show. The results suggest that " α -exo-methylene carbonyl" structure of VD₃ side-chain is crucial for antagonistic activity. The structure is integral building block of many natural products which have interesting biological and it is thought that Michael-type addition of α -exo-methylene carbonyl structure with protein nucleophiles such as cysteine would play an important role for the activities. According to this theory, Michael-type reaction of TEI-9647 and TEI-9648 with cysteine residue in protein related to VDR/VDRE-mediated genomic actions such as VDR would be essential step of the antagonistic action. © 2004 Elsevier Ltd. All rights reserved.

Keywords: Vitamin D analogues; Antagonists; Molecular mechanism; Paget's disease of bone

1. Introduction

Vitamin D₃ lactone analogues, TEI-9647 (**1a**) and TEI-9648 (**1b**), are the first VD₃ antagonists which inhibit VDR/VDRE-mediated genomic actions of 1α ,25(OH)₂D₃. That is, these analogues inhibit cells differentiation [1] and 24-OHase gene expression [2,3] induced by 1α ,25(OH)₂D₃. In order to clarify the mechanism of the activity from a ligand structure standpoint, we focused on the unique lactone structure of **1a**/**1b** because original natural VD₃ lactone, a major metabolite of 1α ,25(OH)₂D₃, has no antagonistic activity in spite of having a very similar lactone structure. Here, we report the synthesis and biological evaluation of lactone-modified **1a/1b** analogues (exo-methylene-modified: **2–8**; oxygen-modified: **9**, **10**; Fig. 1) and presumption of the mechanism of the antagonistic activity.

2. Chemistry

1a/1b and **2** were synthesized in our laboratory as described previously [4]. The analogues **3–9** were synthesized employing the convergent protocol using palladium-catalyzed coupling reaction [5]. For synthesis of **3**, double-bond isomerization of lactone derivatives **14a/14b** prepared from Vitamin D₂ [4] by Rh(III) gave CD-ring precursors **15a/15b**. The Pd-catalyzed coupling reaction of the **15a/15b** with A-ring enyne precursor **16a** followed by deprotection of silyl groups afforded the target **3a/3b** (Scheme 1).

For synthesis of 4, non-substituted lactone derivative 17 prepared by lactonization reaction of the aldehyde 12 with

^{*} Presented at the 12th Workshop on Vitamin D (Maastricht,

The Netherlands, 6–10 July 2003).

^{*} Corresponding author. Fax: +81-42-586-8298.

E-mail address: k.takenouchi@teijin.co.jp (K. Takenouchi).

¹ Pharmaceutical Discovery Research Laboratories.

² Present address: XenoPort Inc., 3410 Central Expressway Santa Clara, CA, USA.

³ Pharmaceutical Development Research Laboratories.

^{0960-0760/\$ –} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.jsbmb.2004.03.046

Fig. 1. Structures of TEI-9647 (1a), TEI-9648 (1b), natural VD3 lactone and lactone-modified analogues 2-10.

Scheme 2.

cyclopropane derivative and TiCl₄ was used for CD-ring part (Scheme 2). **4a** and **4b** were diastereomers caused by asymmetric center at 23-position and these were able to separate by reverse-phase HPLC but have not been determined their absolute configurations. For syntheses of **5** and **6**, corresponding CD-ring parts **18** or **19** were prepared by aldol reaction of **17** with acetaldehyde or acetone followed by dehydration (Scheme 2).

For synthesis of **7**, epoxydation of aldehyde **12** with trimethyloxosulfonium ylide followed by lactonization with isobutyric acid gave desired CD-ring precursor **21** (Scheme 3).

For synthesis of **8**, diol **23** was prepared from ketone **11** by acetal protection, cyano group reduction, Reformatosky type allylation with bromomethylacrylate methyl ester and reduction of ester group. Cyclopropanation of **23** then oxidation of primary hydroxyl group to generate lactone-ring followed by deprotection of acetal group and bromomethylenation afforded target CD-ring part **26** (Scheme 4).

For synthesis of **9**, target CD-ring **29a/29b** was synthesized by Reformatosky type allylation of imine which was prepared from **12** and *p*-methoxyaniline with bromomethylacrylate ester, lactonization, then deprotection of *p*-methoxyphenyl group with CAN (Scheme 5).

The analogue **10** was synthesized by direct modification of Vitamin D skeleton. That is, bromination of alcohol **30** prepared from Vitamin D₂ [6] gave **31**. Lithiation of **31** then conjugation addition to cyclopentenone afforded **32**. α -Exo-methylenation with *N*-methylaniline-TFA salts and paraformaldehyde followed by deprotection of silyl groups gave **10a**/**10b** with regioisomers **33** which were separated by HPLC.

3. Biological evaluations

Binding affinity to VDR and HL-60 cell differentiation assay were performed as described previously [1].

4. Results

Biological activities of the analogues 2-10 on binding affinity to chick intestinal VDR and antagonistic activity in HL-60 cell differentiation evaluating system were summarized in Table 1.

The VDR binding affinity of the analogues became weaker than original antagonist **1a/1b** except dimethyl

Scheme 5.

Table 1 VDR binding affinity and antagonistic activity of TEI-9647 side-chain analogues

Compound	VDR binding affinity ^a	Antagonistic activity ^b
1α,25(OH) ₂ D ₃	100	NA
1a/1b (TEI-9647/TEI-9648)	12.3/7.2	100/41
2a	0.5	NA
3a/3b	0.9/1.1	NA/NA
4a/4b	0.6/0.5	NA/NA
5a/5b	4.1/2.4	NA/NA
6a/6b	66.7/9.9	NA/NA
7a/7b	22.7/0.7	NA/NA
8a/8b	8.2/1.0	NA/NA
9a/9b	4.4/1.4	NA/NA
10a/10b	1.4/3.5	34/26

^a Relative activity which normalized by the potency of 1α ,25(OH)₂D₃ (=100) using chick intestinal VDR.

^b Relative activity which normalized by the potency of **1a** (=100) in HL-60 cell differentiation system induced by 1α ,25(OH)₂D₃, NA = not antagonist.

analogues **6a/6b** and **7a**. Any exomethylene-modified analogues **2–8** and the nitrogen analogue **9** did not have the antagonistic activity, on the other hand the carbon analogue **10** kept the antagonistic activity.

5. Discussion

The results of the antagonistic activities of the side-chain analogues except the nitrogen analogue **9** reveal that " α -exo-methylene carbonyl" structure of VD₃ side-chain is crucial for antagonistic activity. The structure is integral building block of many natural products which have interesting biological activities such as cytotoxic, antitumoral and bactericidal [7]. It is thought that Michael-type addition of α -exo-methylene carbonyl structure with protein nucleophiles such as cysteine would play an important role in the activities [8]. According to this theory, Michael-type reaction of **1a/1b** with cysteine residue in protein related to VDR/VDRE-mediated genomic actions such as VDR would be essential step of the antagonistic action (Fig. 2).

The reason why the nitrogen analogue **9** has no antagonism is thought that side-chain of **9** would not occur the Michael-type reaction because the ability of the Michael acceptor of **9** is very weak due to the existence of electron-donating nitrogen atom at α -position of the carbonyl group. It is reported that antagonistic mechanism of ZK159222, another VD₃ antagonist from Schering, may attribute to be pushing helix 12 of the VDR by bulky side-chain extensions [9]. Our hypothesis of TEI-9647 antagonistic

Fig. 2. Michael-type reaction of 1a/1b with cysteine residue of protein.

mechanism is obviously different from that of ZK159222 and compatible with the fact that each antagonist stabillize different antagonistic conformation [10]. The VD₃ antagonist is expected to be potent therapeutic agent for some diseases caused by hypersensitivity to 1α ,25(OH)₂D₃ such as Paget's disease of bone [11,12]. We expect that this study would contribute to discovery and development of such treating agent. Further studies will be reported in due course.

Acknowledgements

The authors are indebted to Prof. B.M. Trost (Stanford University), M. Furuya (Teijin Ltd.), Y. Sakuma (Teijin Ltd.) and S. Kondo (Teijin Ltd.) for valuable discussions.

References

- [1] D. Miura, K. Manabe, K. Ozono, M. Saito, Q. Gao, A.W. Norman, S. Ishizuka, Antagonistic action of novel 1 α ,25-dihydroxyvitamin D₃-26,23-lactone analogs on differentiation of human leukemia cells (HL-60) induced by 1 α ,25-dihydroxynitamin D₃, J. Biol. Chem. 274 (23) (1999) 16392–16399.
- [2] K. Ozono, M. Saito, D. Miura, T. Michigami, S. Nakajima, S. Ishizuka, Analysis of the molecular mechanism for the antagonistic action of a novel 1α,25-dihydroxyvitamin D₃ analog toward Vitamin D receptor function, J. Biol. Chem. 274 (45) (1999) 32376–32381.
- [3] S. Ishizuka, D. Miura, H. Eguchi, K. Ozono, M. Chokki, T. Kamimura, A.W. Norman, Antagonistic action of novel 1α,25-dihydroxyvitamin D₃-26,23-lactone analogs on 25-hydroxyvitamin D₃-24-hydroxylase gene expression induced by 1α,25-dihydroxynitamin D₃ in human promyelocytic leukemia (HL-60) cells, Arch. Biochem. Biophys. 380 (1) (2000) 92–102.
- [4] K. Manabe, S. Ishizuka, M. Tabe, H. Tanaka, Q. Gao, M. Furuya, K. Tomimori, Y. Sakuma, A. Hazato, Synthesis and Biological activity of novel Vitamin D₃-lactone analogues, in: A.W. Norman, R. Bouillon, M. Thomasset (Eds.), Vitamin D: Chemistry, Biology and Clinical Applications of the Steroid Hormone, University of California, Reverside, CA, 1997, pp. 79–80.
- [5] B.M. Trost, J. Dumas, M. Villa, New strategies for the synthesis of Vitamin D metabolites via Pd-catalyzed reactions, J. Am. Chem. Soc. 114 (25) (1992) 9836–9845.
- [6] M.J. Calverley, Synthesis of MC903, a biological active Vitamin D metabolite analogue, Tetrahedron 43 (20) (1987) 4609–4619.
- [7] H.M.R. Hoffmann, J. Rabe, Synthesis and biological activity of α -methylene- γ -butyrolactones, Angew. Chem. Int. Ed. Engl. 24 (2) (1985) 94–110.
- [8] S.M. Kupchan, D.C. Fessler, M.A. Eakin, T.J. Giacobbe, Reactions of alpha methylene lactone tumor inhibitors with model biological nucleophiles, Science 168 (3929) (1970) 376–378.
- [9] C. Carlberg, Molecular basis of the selective activity of Vitamin D analogues, J. Cell. Biochem. 88 (2) (2003) 274–281.
- [10] A. Toell, M.M. Gonzalez, D. Ruf, A. Steinmeyer, S. Ishizuka, C. Carlberg, Different molecular mechanisms of Vitamin D₃ receptor antagonists, Mol. Pharmacol. 59 (6) (2001) 1478–1485.
- [11] C. Menaa, J. Barsony, S.V. Reddy, J. Cornish, T. Cundy, G.D. Roodman, 1,25-Dihydroxyvitamin D₃ hypersensitivity of osteoclast precursors from patients with Paget's disease, J. Bone Miner. Res. 15 (2) (2000) 228–236.
- [12] N. Kurihara, S.V. Reddy, C. Menaa, D. Anderson, G.D. Roodman, Osteoclasts expressing the measles virus nucleocapsid gene display a pagetic phenotype, J. Clin. Invest. 105 (5) (2000) 607– 614.